Field equations

$$
\mathcal{L}=-\frac{1}{16 \pi} F_{\mu \nu} F^{u v}-\frac{1}{c} J_{\mu} A^{\mu}
$$

Using $F_{\mu v}=\partial_{\mu} A_{\nu}-\partial_{r} A_{\mu}$

$$
\begin{gathered}
\mathscr{L}=-\frac{1}{8 \pi} g_{\mu \alpha} g_{\nu \beta}\left[\left(\partial^{\alpha} A^{\beta}\right)\left(\partial^{\mu} A^{\nu}\right)-\left(\partial^{\alpha} A^{\beta}\right)\left(\partial^{\nu} A^{\mu}\right]\right. \\
-\frac{1}{c} g_{\mu^{\alpha}} J^{\alpha} A^{\mu}
\end{gathered}
$$

Lagrange feel equations:
field degrees of

$$
\begin{aligned}
& \text { freedom: } A^{\rho} \\
& \frac{\partial \mathscr{L}}{\partial A^{\rho}}=\partial^{\tau}\left(\frac{\partial \mathscr{L}}{\partial\left(\partial^{\tau} A^{\rho}\right)}\right) \\
& \partial^{\tau} F_{\tau \rho}=\frac{4 \pi}{c} J_{\rho} \\
& \delta S=0 \quad S=\int d^{4} \times \mathcal{L} \\
& \delta\left(F_{\mu \nu} F^{\mu \nu}\right)=2 F_{\mu v} \delta F^{\mu v} \\
& =2 F_{\mu r} \delta\left(\partial^{\mu} A^{v}-\partial^{\nu} A^{\mu}\right) \\
& =4 F_{\mu r} \delta\left(\partial^{\mu} A^{r}\right) \\
& \text { since } \\
& F_{\mu \nu}=-F_{\nu \mu}
\end{aligned}
$$

$$
\begin{aligned}
& =4 F_{\mu \nu} \partial^{\mu}\left(\delta A^{\nu}\right) \\
& =4 \partial^{\mu}\left(F_{\mu \nu} \delta A^{\nu}\right)-4\left(\partial^{\mu} F_{\mu \nu}\right) \delta A^{\nu} \\
\delta \mathcal{L} & =-\frac{1}{4 \pi} \partial^{\mu}\left(F_{\mu \nu} \partial A^{\nu}\right)+\frac{1}{4 \pi} \delta A^{\nu}\left[\partial^{\mu} F_{\mu \nu}-\frac{4 \pi}{c} J_{\nu}\right] \\
\delta S & =\frac{1}{4 \pi} \int \delta A^{\nu}\left[\partial^{\mu} F_{\mu \nu}-\frac{4 \pi}{c} J_{\nu}\right]=0 \\
& \partial^{\mu} F_{\mu \nu}=\frac{4 \pi}{c} J_{c} \quad \begin{array}{c}
\text { two } \\
\begin{array}{l}
\text { dynamical } \\
\text { Maxwell } \\
\text { equations }
\end{array}
\end{array}
\end{aligned}
$$

Two other Maxwell equations

$$
\tilde{F}^{\mu \nu}=\frac{1}{2} \varepsilon^{\mu \alpha \beta \beta} F_{\alpha \beta}
$$

$$
\partial_{\mu} \tilde{F}^{\mu v}=0
$$

two kinematical Maxwell equation
automatically satisfied

$$
\begin{gathered}
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \\
O=\varepsilon^{\mu \alpha \alpha \beta} \partial_{\mu} F_{\alpha \beta}=\varepsilon^{\mu \alpha \alpha \beta} \partial_{\mu}\left(\partial_{\alpha} A_{\beta}-\partial_{\beta} A_{\alpha}\right)
\end{gathered}
$$

since $\varepsilon^{\mu r \alpha \beta} \partial_{\mu} \partial_{\alpha}=0=\varepsilon^{\mu \nu \alpha \beta} \partial_{\mu} \partial_{\beta}$

Lagrangian of point particle dynamics (relativistic version).

Only possible action that is relativistically invariant is

$$
\begin{aligned}
S & =-m c^{2} \int d \tau \quad \begin{array}{r}
\tau=\text { proper time } \\
-m c^{2}: \text { constant }
\end{array} \\
& =-m c^{2} \int \frac{d \tau}{d t} d t \quad S=\int L d t \\
& =-m c^{2} \int \gamma^{-1} d t \quad \\
& =-m c^{2} \int \sqrt{1-\frac{r^{2}}{c^{2}}} d t \\
L & =-m c^{2} \sqrt{1-\frac{r^{2}}{c^{2}}}
\end{aligned}
$$

(remark: γL is Lorentz invariant) check non relativistic limit

$$
L=-m c^{2}+\frac{1}{2} m v^{2}
$$

Momentum

$$
\begin{aligned}
\vec{p}=\frac{\partial L}{\partial \vec{r}} & =\frac{m \vec{v}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
H=\vec{p} \cdot \vec{v}-L & =\frac{m c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\sqrt{\vec{p}^{2} c^{2}+m^{2} c^{4}}
\end{aligned}
$$

Recall $L=L(\vec{x}, \vec{v}) \quad \vec{v}=\overrightarrow{\vec{x}}$

$$
\begin{aligned}
H=H(\vec{x}, \vec{p}) & \mathscr{L}_{\text {int }}=-\frac{1}{c} J_{\mu} A^{\mu} \\
\gamma_{L_{\text {int }}}=\frac{-1}{c} \int d^{3} y \gamma J_{\mu} A^{\mu} & L_{\text {int }}=\int d^{3} y_{\text {int }}
\end{aligned}
$$

For point particles with change 8 .

$$
\begin{aligned}
& \gamma_{\mu}(\vec{x})=q u_{\mu} \delta^{3}(\vec{x}-\vec{y}) \quad(\vec{J}=\rho \vec{v}) \\
& L_{\text {int }}=\frac{-q}{\gamma_{c}} u^{\mu} A_{\mu} \quad u^{\mu}=(\gamma c ; \gamma \vec{v}) \\
& =-q \Phi+\frac{q}{c} \vec{v} \cdot \vec{A}
\end{aligned}
$$

Aside:

$$
\begin{aligned}
L_{\text {int }} & =\frac{-q}{\gamma_{c}} \frac{d x^{\mu}}{d \tau} A_{\mu} \\
& =\frac{-8}{c} \frac{d x^{\mu}}{d t} A_{\mu} \\
S_{\text {int }} & =\int L_{\text {int }} d t
\end{aligned}
$$

Vader a gauge transformation

$$
\begin{aligned}
A_{\mu} & \rightarrow A_{\mu}-\partial_{\mu} \Lambda(x) \quad\left(x_{1}, t_{1}\right) \\
S_{\text {int }} & \rightarrow S_{\text {int }}+\frac{q}{c} \int_{x_{1}}^{x_{2}} \partial_{\mu} \Lambda(x) d x^{\mu} \\
& =S_{\text {int }}+\frac{q}{c}\left[\Lambda\left(x_{2}\right)-\Lambda\left(x_{1}\right)\right]
\end{aligned}
$$

Conclusion:
1 independent of the Equations of motion extremum path are gauge-radependent. determines the equations of motion.

The Lagrangian for a point particle in an electromagnetic fold \quad (change $=8$)

$$
L=-m c^{2} \sqrt{1-\frac{r^{2}}{c^{2}}}-8 \Phi+\frac{q}{c} \vec{V} \cdot \vec{A}
$$

Step 1: determine the "canonical momentum" \vec{P}

$$
\left.\begin{array}{rl}
\vec{P} & =\frac{\partial L}{\partial \vec{v}}=\frac{m \vec{v}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}+\frac{q}{c} \vec{A} \\
& =\vec{p}+\frac{q}{c} \vec{A} \quad \vec{p}=\text { mechanical } \\
\text { momentuin }
\end{array}\right] \begin{aligned}
H & =\vec{P} \cdot \vec{v}-L \\
H & =c \sqrt{\left(P-\frac{q \vec{A}}{c}\right)^{2}+m^{2} c^{2}}+q \Phi(\vec{x})
\end{aligned}
$$

Principle of minimal substitution

$$
P^{\mu} \rightarrow P^{\mu}-\frac{q}{c} A^{\mu}
$$

In the non-relativestic limit:

$$
H=\frac{\left(\vec{P}-\frac{8 \vec{A}}{c}\right)^{2}}{2 m}+8 \Phi(\vec{x})
$$

The equations of motion

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial L}{\partial \vec{v}}=\frac{\partial L}{\partial \vec{x}} \\
& \frac{\partial L}{\partial \vec{r}}=\vec{P}=\vec{\rho}+\frac{q}{c} \vec{A} \\
& \frac{\partial L}{\partial \vec{x}}=-q \vec{\nabla} \Phi+\frac{q}{c} \vec{D}(\vec{v} \cdot \vec{A}) \\
& \vec{\nabla}(\vec{V} \cdot \vec{A})=\vec{v} \cdot \vec{D} \vec{A}+\vec{v} \times(\vec{\nabla} \times \vec{A}) \\
&=\frac{d \vec{A}}{d t}-\frac{\partial \vec{A}}{\partial t}+\vec{V} \times \vec{B}
\end{aligned}
$$

since the chain rule states that

$$
\begin{aligned}
\frac{d \vec{A}}{d t} & =\frac{\partial \vec{A}}{\partial t}+\sum_{i} \frac{\partial \vec{A}}{\partial x_{i}} \frac{d \vec{x}_{i}}{d t} \\
& =\frac{\partial \vec{A}}{\partial t}+\vec{V} \cdot \vec{\nabla} \vec{A}
\end{aligned}
$$

Hence the equations of motion are:

$$
\begin{aligned}
& \frac{d \vec{p}}{d t}+\frac{q}{c} \frac{d \vec{A}}{d t}= q\left(\vec{E}+\frac{1}{c} \frac{\partial \vec{A}}{\partial t}\right) \\
&+\frac{q}{c}\left[\frac{d \vec{A}}{d t}-\frac{\partial \vec{A}}{\partial t}+\vec{v} \times \vec{B}\right] \\
& \frac{d \vec{p}}{d t}=q\left(\vec{E}+\frac{\vec{k}}{c} \times \vec{B}\right)
\end{aligned}
$$

Frown $E^{2}=c^{2} \vec{p}^{2}+m^{2} c^{4}$

$$
E \frac{d E}{d t}=c^{2} \vec{p} \cdot \frac{d \vec{p}}{d t}
$$

Use $\vec{v}=\frac{c^{2} \vec{p}}{E}$

$$
\begin{aligned}
\Rightarrow \frac{d E}{d t} & =\vec{v} \cdot \frac{d \vec{p}}{d t} \\
& =q \vec{v} \cdot\left(\vec{E}+\frac{\vec{v}}{c} \times \vec{B}\right) \\
\frac{d E}{d t} & =q \vec{v} \cdot \vec{E}
\end{aligned}
$$

That is, $\quad \frac{d p^{\mu}}{d \tau}=\frac{b}{c} F^{\mu \nu} u_{\nu}$

Dynamics of charge particles in an electromagnetic field

1. Uniform static magnetic Field (relativistic) Equations of motion:

$$
\begin{aligned}
& \frac{d \vec{p}}{d t}=e\left[\vec{E}+\frac{\vec{v}}{c} \times \vec{B}\right] \\
& \frac{d E}{d t}=e \vec{v} \cdot \vec{E}
\end{aligned}
$$

For $\vec{E}=0 \Rightarrow \frac{d E}{d t}=0 \quad$ (energy is constant intine)

$$
E=\gamma m c^{2} \quad \gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}} \Rightarrow|\vec{v}| \text { is constant }
$$

Define $\vec{\omega}_{B}=\frac{e \vec{B}}{\gamma_{m} c}=\frac{e c \vec{B}}{E}$

$$
\begin{aligned}
& \vec{p}=\gamma_{m} \vec{v} \\
& \Longrightarrow \frac{d \vec{v}}{d t}=\vec{v} \times \vec{\omega}_{B}
\end{aligned}
$$

$\vec{v} \times \vec{\omega}_{B}$ is perpendicular to \vec{V}

Take $\vec{B}=B \hat{z} \Rightarrow \vec{\omega}_{B}=\omega_{B} \hat{z}$

$$
\begin{aligned}
& \vec{v} \times \vec{\omega}_{B}=\left(\hat{x} v_{y}-\hat{y} v_{x}\right) \omega_{B} \\
& \dot{v}_{x}=\omega_{B} v_{y} \\
& \dot{v}_{y}=-\omega_{B} v_{x} \quad \dot{v} \equiv \frac{d v}{d t} \\
& \dot{v}_{z}=0 \quad \quad v_{11} \equiv v_{z}
\end{aligned}
$$

Solve using the "complex" velocity (physical velocity is the real part)

$$
\begin{aligned}
& \mathfrak{J} \equiv v_{x}+i v_{y} \\
\Rightarrow & \dot{\jmath}=-1 \omega_{B} f \\
& f(t)=\omega_{B} a e^{-1\left(\omega_{B} t+\alpha\right)}
\end{aligned}
$$

Hence,

$$
\vec{v}(t)=v_{11} \hat{z}+\omega_{B} a(\hat{x}-i \hat{y}) e^{-1\left(\omega_{\beta} t+\alpha\right)}
$$

Integrate to get

$$
\begin{aligned}
& \text { Integrate to get } \\
& \vec{x}(t)=\vec{r}_{0}+v_{11} t \hat{z}+i a(\hat{x}-i \hat{y}) e^{-1\left(\omega_{B} t+\alpha\right)}
\end{aligned}
$$

Take real parts

$$
\begin{aligned}
& x=x_{0}+a \sin \left(\cos _{B} t+\alpha\right) \\
& y=y_{0}+a \cos \left(\cos _{B} t+\alpha\right) \\
& z=z_{0}+v_{11} t
\end{aligned}
$$

Note: $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=a^{2}$

$$
\begin{aligned}
& v_{\perp}=\sqrt{v_{x}^{2}+v_{y}^{2}}=c_{B} a=\frac{e B a}{\gamma m c} \\
& P_{\perp}=\gamma m v_{\perp}=\frac{e B a}{c}
\end{aligned}
$$

$$
\tan \theta=\frac{v_{11}}{\omega_{B} a}
$$

helical motion
2. Crossed \vec{E} and \vec{B} fields (static uniform)

$$
\uparrow \vec{E} \cdot \vec{B}=0
$$

$$
\frac{d E}{d t} \neq 0
$$

Method: transform to a new reference frame K^{\prime} such that either $\vec{E}=0$ or $\vec{B}^{\prime}=0$.

The frame K^{\prime} moves with velocity $\subset \vec{\beta}$ with respect to the frame K

Now, we solve

$$
\begin{gathered}
\frac{d \overrightarrow{\rho^{\prime}}}{d t^{\prime}}=e\left(\overrightarrow{E^{\prime}}+\frac{\vec{v}^{\prime} \times \vec{B}}{c}\right) \\
\vec{E}^{\prime}=\gamma(\vec{E}+\vec{\beta} \times \vec{B})-\frac{\gamma^{2}}{1+\gamma} \vec{\beta}(\vec{\beta} \cdot \vec{E}) \\
\vec{B}^{\prime}=\gamma(\vec{B}-\vec{\beta} \times \vec{E})-\frac{\gamma^{2}}{1+\gamma} \vec{\beta}(\vec{\beta} \cdot \vec{B})
\end{gathered}
$$

Case 1: $\quad|\vec{E}|<|\vec{B}|$
Then I will choose $\vec{\beta}=\frac{\vec{E} \times \vec{B}}{|\vec{B}|^{2}}$
Note $\beta \equiv|\vec{\beta}|<1$

$$
\begin{aligned}
& \overrightarrow{E^{\prime}}=0 \\
& \vec{B}^{\prime}=\gamma-1 \vec{B}
\end{aligned}
$$

When you return to frame k, there is an additional uniform drift (called the $\vec{E} \times \vec{B}$ drift) in the direction of $\vec{\beta}$ (which is \perp to \vec{E}, \vec{B} fields). The drift is independent of the electric change.

Case 2: $|\vec{E}|>|\vec{B}|$
Choose $\vec{\beta}=\frac{\vec{E} \times \vec{B}}{|\vec{E}|^{2}} \quad 0 \leqslant \beta<1$

$$
\begin{aligned}
& \overrightarrow{B^{\prime}}=0 \\
& \vec{E}^{\prime}=\gamma^{-1} \vec{E}
\end{aligned}
$$

Case 3: $\quad|\vec{E}|=|\vec{B}|$
Solve either Case 1 or Case 2 for $\vec{v}(t)$ and $\vec{x}(t)$, and then take limit of $|\vec{E}| \rightarrow|\vec{B}|$.

Dynamics of a changed particle with intrinsic spin
changed pantides such as the electron or proton are also point magnetic dipole.

Classically,

$$
\vec{m}=\frac{1}{2 c} \int \vec{x} \vec{x}^{\prime} \times \vec{J}\left(\vec{x}^{\prime}\right) d^{3} x^{\prime}
$$

For a point particle of change?

$$
\begin{aligned}
\vec{J} & =q \vec{v} \delta^{3}\left(\vec{x}-\vec{x}^{\prime}\right) \\
\Rightarrow \quad \vec{m} & =\frac{q}{2 c} \vec{x} \times \vec{v}=\frac{q}{2 m c} \vec{L}
\end{aligned}
$$

(non-relativistic)
For particles with spin,

$$
\vec{m}=\frac{q}{2 m c}(\vec{L}+g \vec{S})
$$

In the rest frame $(\vec{u}=0)$, for $q=e$

$$
\vec{m}=\frac{g e}{2 m c} \vec{S}
$$

In an external magnetic feed \vec{B}, torque \vec{N}

$$
\vec{N}=\frac{d \vec{S}}{d t}=\vec{m} \times \vec{B}
$$

$\frac{d \vec{S}}{d t}=\frac{g e}{2 m c} \vec{S} \times \vec{B} \quad$ in the rest frame

How does this generalize to an anbitrany reference frame?

We shall introduce a spin four vector S^{μ}

$$
S^{\mu}=\left(S^{0}, \vec{S}\right)
$$

such that

$$
\begin{array}{r}
S \cdot p=0 \quad[\text { So in the rest frame } \\
\\
\left.S^{\mu}=(0 ; \vec{S})\right] \\
p^{\mu}=(m c ; \overrightarrow{0})
\end{array}
$$

